Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ying Tao, Qun Yu and Jian-Rong Li*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
jianrongli@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.117$
Data-to-parameter ratio $=15.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[bis(tetrafluoroborato)copper(II)]bis $\left[\mu-1,3\right.$-bis(ethylsulfinyl)propane- $\left.\left.\kappa^{2} O: O^{\prime}\right]\right]$

The title complex, $\left[\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}\right)_{2}\right]_{\mathrm{n}}$, is isostructural with the perchlorate analog [Li et al. (2005). Cryst. Growth Des. 5, 1919-1932], both having a double-bridging onedimensional chain structure containing sixteen-membered macrocyclic units. Each Cu atom lies on a crystallographic inversion center

Comment

In recent years, we have been focusing on the investigation of flexible disulfoxide metal complexes (Li et al., 2004, 2005). As part of these efforts, we report here the crystal structure of a copper(II) complex $\left[\mathrm{Cu}(L)_{2}\left(\mathrm{BF}_{4}\right)_{2}\right]_{\mathrm{n}}$, (I), where L is 1,3 -bis(ethylsulfinyl)propane, which is isostructural with the perchlorate analog reported by us (Li et al., 2005), having a double-bridging one-dimensional chain structure containing sixteen-membered macrocyclic units (Fig. 1). Selected geometric parameters are listed in Table 1.

Received 17 February 2006
Accepted 20 February 2006

(I)

Each copper(II) center, located on a crystallographic inversion center, is in a tetragonally elongated octahedral coordination environment formed by four O atoms of distinct L ligands in the equatorial plane and two F atoms of $\mathrm{BF}_{4}{ }^{-}$in the axial positions. The $\mathrm{Cu}-\mathrm{F}$ distance is 2.575 (2) \AA, which should be considered as a weak coordination. In (I), the intramolecular $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 7.767 (2) \AA. In the crystal structure of (I), all the chains are arranged parallel to the crystallographic a-axis direction.

Experimental

The ligand 1,3-bis(ethylsulfinyl)propane (L) was synthesized according to the method reported by Zhang et al. (1995). Single crystals of (I) suitable for X-ray analysis were obtained by diffusing an acetone solution $(4 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(35 \mathrm{mg}, 0.1 \mathrm{mmol})$ into a chloroform solution (4 ml) of $L(39 \mathrm{mg}, 0.2 \mathrm{mmol})$ using diethoxyethane (3 ml) as interlayer and dehydrating reagent at room

Figure 1
Part of the polymeric chain of (I), showing 20% probability displacement ellipsoids and the atomic numbering. Atoms labeled with the suffixes A, B and C are generated by the symmetry operations $(-x, 1-y,-z),(x-1, y, z)$ and $(1-x, 1-y,-z)$, respectively.
temperature. After 14 d , blue crystals were collected. Yield: 48%. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{CuB}_{2} \mathrm{~F}_{8} \mathrm{O}_{4} \mathrm{~S}_{4}$: C $26.71, \mathrm{H} 5.13 \%$; found: C 26.56, H 5.21%. IR (cm^{-1}): 3430 (m), 2934(m), 1635 (w), 1449 (m), $1411(w), 1382(w), 1060(s), 982(s), 952(s), 522(m)$. In the IR spectrum, the strong $\mathrm{S}=\mathrm{O}$ stretching vibration at $982 \mathrm{~cm}^{-1}$ is lower than that of the free ligand $\left(1019 \mathrm{~cm}^{-1}\right)(\mathrm{Li}$ et al., 2005), indicating that O atoms of L coordinate to metal ions.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}\right)_{2}\right]} \\
& M_{r}=629.80 \\
& \text { Monocclinic, } P 2_{1} / n \\
& a==7.767(3) \AA \\
& b=11.091(5) \AA \\
& c=15.094(7) \AA \\
& \beta=96.074(8)^{\circ} \\
& V=1293.0(10) \AA^{3} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.617 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 1640 reflections
$\theta=2.9-26.5^{\circ}$
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.22 \times 0.18 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.762, T_{\text {max }}=0.835$
6471 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.117$
$S=1.03$
2408 reflections
151 parameters

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.931(2)$	$\mathrm{S} 1-\mathrm{O} 1$	$1.5284(19)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9411(17)$	$\mathrm{S} 2-\mathrm{O} 2$	$1.5331(18)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	180	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 2$	$105.67(14)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$87.50(8)$	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 5$	$103.52(12)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$92.50(8)$	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 6$	$104.61(13)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2$	180	$\mathrm{C} 5-\mathrm{S} 2-\mathrm{C} 6$	$99.74(14)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 3$	$101.33(13)$		

Symmetry code: (i) $-x,-y+1,-z$.
H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with $\mathrm{C}-\mathrm{H}=0.96$ or $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5$ or 1.2 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank Nankai University for supporting this work.

References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Li, J.-R., Bu, X.-H. \& Zhang, R.-H. (2004). Inorg. Chem. 43, 237-244.
Li, J.-R., Bu, X.-H., Zhang, R.-H. \& Ribas, J. (2005). Cryst. Growth Des. 5, 1919-1932.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Zhang, R.-H., Zhan, Y.-L. \& Chen, J.-T. (1995). Synth. React. Inorg. Met.-Org. Chem. 25, 283-292.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

